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1 Introduction

For fixed positive integer d and d-tuple of positive integers (si, ..., sq) with s; > 1, the

multiple zeta value ((sq,...,Sq) is defined by
(51,00, 8q) = Z Ryt ko, (1)
ky>e>kg>0

where d is called the depth and s; 4 --- + s4 the weight. The double zeta values were

studied by Euler [1] who derived many identities such as follows:

2n—1

S (1)C(k 20— k) = £C(2n),
k=2
SOk 20— K) = C(2n),
k=2

from which we can easily get (see [2, Theorem 1])

n—1

> ((2k,2n — 2k) = zg(m). (2)
k=1
Using the stuffle relation ((2k)((2n — 2k) = ((2k, 2n — 2k) + ((2n — 2k, 2k) + ((2n) we
see immediately
2n+1

S cncen—2%) = 2 eqan) ®)

Recently, Hoffman [3] extended (2] to arbitrary depths. Moreover, similar formulas
have been obtained for some special type Hurwitz-zeta values [4] and alternating Euler

sums [5]. In this paper we consider the following restricted sum of multiple zeta values

QUn,d)= > ((4u,. .., 4da).

JiHig=n
Jise-s3a>0

Our main theorem is
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Theorem 1.1. For any positive integers n > d > 3,

d
2 12k41 5p40 L5 J+i+d i=
2 ( 1) 2 2k +1 I 2%k
Q4n,d) = E E 2k + 1) < . )( d )((471 2k)m

k=0 j=0 J
1952] aky2 2%+5 htitd j—2
2 ( 1)+t (4f + 2\ (152 7 "
dn — 4k,2) — =((4n — 4k

Remark 1.2. For d = 2, it’s easy to prove by stuffle relation that

[y

3

CAR)G(an — ak) = "2 ((4n)

1

N —

Q(4n,2) =

B
Il

for n > 2. However, it is an intriguing problem to find a compact formula similar to (3]).
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2 The generating function of Q(4n,d)

Recall that the symmetric function of the infinitely many variables xy,zs,--- form a
subring Sym of Q[xy, 23, - - -] which is invariant under all the permutations of the vari-
ables. Let e; = Zk1<---<kj T, - .. Tk, be the j-th elementary function. Following Hoffman

[3] let’s consider its generating function

E(t) = ﬁ(l + tx;) = i e;t!

1
and define ¢ : Sym — R to be the evaluation map such that e(z;) = —. Let
J

= H(l + tszy 4 ts7x) + ).

Jj=1

Then it is not hard to see that the generating function of Q)(4n, d) is given by

e(F(s,t) = > Q4n,d)t’s".

n=0

First we need the following lemma.



Lemma 2.1. We have

sinmy/s(1 —t)-sinh7/s(1 —t)
V1 —tsinm/s-sinhmy/s

e(F(s,t)) =

Proof. We have

= 2,2 _OO STj
H(1+ts:cj+ts xj+-~-)—H<1+t1_szj)

j=1 ey
IS0 —s(=t)r)  B(—s(1-1))
[[Z,(1 = sz) E(-s)
Further,
o 00 ) A ' \
e(B(—t) = 1—.£ = 1_& 1—|—£ _sinm t smhﬂ-\/?
i=1 " i=1 i @ 72/t
The lemma follows immediately. .

Let f(x) = sinx - sinhz/(22?). The following lemma provides its series expansion.

Lemma 2.2. We have -
e (=DRaE
T@) =2 i

k=

[e=]

Proof. Using the well-known formula sinz = (" — e~**)/(2i) we obtain

1 eix _ e—ix et — e T

fla) = 2 2ix ' 2x
B e(i—l—l)m + e—(i—i—l)x _ (6(i—1)x + 6—(i—1)m)
B 8ix?
1 i (20) ™ i (—2i)na?
- 4ig? — (2n)! — (2n)!
— (—Dk4F
= -7
' )
—~ (4k + 2)!
as desired. OJ

3 Proof of Theorem [1.1]

Let g(t) = f(v/t). Then




Write

where D? denotes the d-th derivative with respect to s. Set

Ga(s) = Xa(s)v/scot v/s + Yy(s)v/'s coth v/s + Zy(s) cot v/scoth /s + Wy(s)  (4)
which yields easily

(—1)°Dg(s)

_d-1 1.1 d-l .1 1
i = X4(s)s™% 1 cos s1sinh s + Y,(s)s™%7 1 sin 57 cosh 51

a1 1 1 gl .11
+ Z4(s)s™% 72 cos 51 cosh st + Wy(s)s™ %72 sin 54 sinh s1.

To determine the coefficients X,(s), Yy(s), Zq(s) and Wy(s) we differentiate the both
sides of the above equation to get the following system of recursive differential equations

(04 )X (s) = —sX50) + (d+ 7) Xals) — 1 Za(s) — {Wals),
(A4 1)Yara(s) = =s¥;s) + (4 ) Yalo) + 3 Zals) — W)
(A4 D) Zua(s) = ~ Y2 X(0) — Y2Vals) — sZ4(s) + (d+ ) Zu(s).

|+ W (9) = Y2Xolo) — Y2ito) + (a4 L) Was) - swis),

with the initial conditions Xy(s) = Yy(s) = Zo(s) = 0 and Wy(s) = 1. Let x4(u) =
Xa(u?),ya(u) = Yy(u?), zq(u) = Zz(u?) and wg(u) = Wy(u?). The above system is
changed into the following system:

[ (@4 Vrann(n) = (o) + (4§ )mal) = F2alw) — Julu)

(A4 Vg () = ) + (d 4+ 7 )yalw) + 3 20(u) — oalu),

(A euss(0) = = Falu) — Juala) = 524() + (4+ 3 ) ) "
| @ Dwaa() = L) — Lyatu) + (d 4+ 3 Jwalw) — )



Define

(a(u,v) = ; za(u)v? = d; Fa(v)u,
o) =l = S
WMZ;MWMQ;MW,
5(u,v) = ; walu)o® = ; Ba(v)ul.

\

Multiplying the system (&) by v and then taking the sum > 4>0 We get:

(O _ Oa 1~ ula 1 1,
v Cov T 1% 200 17 1%
03 _ 08 1, wos 1 1,
v v 47 200 a4l T 4”
Oy v 1 wdy u, ug
v ov 27 T 20u 4% 4
9 _ 90 1y udb u, u,
Lo oo 20 200 4t 17
Comparing the coefficients of u" we get
T 1o v n_ v Lo 1.
! (v) vzn(v)+4xn(v) 2:En(v) 4zn(v) 4wn(v),
RS VP T SRS
U (v) v%@0+4%@) 2n@0+4%@) ﬂ%@%

. 1. n._ 1. 1.
zAm=W%@o+§%@»—§n@»—1%4@>—1%4@m
B, (0) =0 () + 2Bu(t) — Sn(0) + S Fnor(0) = <G (0)

\w v) =vw,, (v 2wnv anv 4:L’n_1v 4yn_1v,

By definition (@), we see that the system has the following initial values: ,(0) =
0,7,(0) =0, 2,(0) =0 for all n > 0 and @, (0) = 0 for all n > 1. But for @w,(v) we have

from (B))
21

wo(0) =1, wy(0) = 5

It follows that wy(0) = (2;1) /2% which yields easily

Wo(v) = Y wa(0)0? = (1—0v)72.

d>0

wd_l(O) Vd Z 1.

Similarly we see that Zy(v) = 0. Solving () recursively starting from the first two
equations in ([7]) we find the following functions are the unique solution satisfying the



initial conditions:

( 2n+1 2n(_1)|_7”2er+]

Talv) = ; Aot YT

2n+1 2”( 1)Ln+3J+] o

inlv) = JZ](%H_]) (1-v)F;

= 27!(22127; (1- )%,
info) = (L+ (1) 2, %(1 _

\

Using ([6l) we can solve z,(v), y,(v), z,(v) and w,(v) and get

u7
2n+1 ] d

M \

n=0 j=0
u”
— 2n+1 ] d 7
2 %J‘H 2n n 1
on— 1 +j+d m i=2 "
calu) = (1- (-1 ( )(5)w
n=0  j=0 .]
QL%J 2n 211 1( +j+d jT n
wq(u) = (1+(=1")
(2 d
n=0 7=0
Thus
e )
3
= = (2n +1)! d
|4=1)
£
3
= = (2n +1)! J d
d 2 N2
22
§=0

3
o

,_
»hl&.

2n+1 n+]+d 4n + 2 ]T n+1/2,

4n+2 Jj d ’

4n 22n n+J+d An JT
()3

n=0 j=0 ‘7



By the well-known formulas

zcotz——22C2n n zcothz——2z 2n ,
T T

we obtain
¢(2
Vscot /s = —2 ZO 7T2n . scothv/s=—2 Z 7T2n ,
and
= mC(2m x m)((2l)
\/ECOt %COth%:4Z Z (—1) T §2 = Z TS
k=0 m+I=k k=0 m+1=2k

Here by exchanging m and [ we notice that the inner sum vanishes if k£ is odd. Hence

the coefficient of s™ in Gy(mts) is

L2J2k+1
2k(—1)laltiHd sltitd (o) 41\ (122 ok
4dn — 2k
Q(4n,d) 22; Ok 1) ( j )(d C(4n s

1452 ] 2k41 k LES N i—2
ok ()L IHiHd ok 1 (12
22 E )k 1 An — )2k
+ 2k + 1)! (j)(d)g(n I
k=0 j=0
L2 k2 2k+1 k+j+d j—2
QAL )kHitd (4f 4 2 (12 i
—1)™((2 2
+4Z; T ( ; )(d) mZ (~1)"¢2m)¢(21) | =
m+l;27n7—2k

since Wy(s) has degree less than n. Observe that the first two lines are the same and

for any positive integer w

S (C)meEmC(2l) =23 ¢ — A1) — 3 ¢ (dw — 21) — ((4w)
m, >0, =1 =1
m-+l=2w
—4Q(4w,2) + (2w — 3)C(4w) — T (4w

~1Q(4w,2) ~ L (4u)
by stuffle relation ((4m)((4l) = ((4m,4l) + ((4l,4m) + ((4m + 4l) and equation (3.
Therefore we finally get

1452 J2k+1 J+]+d<(4 ok ;
n—2k)m (2k + 1\ (45 ok
- — 2k
Qunag =1y Y HE () (7 )etn 20
k=0 j=0
192 ] ak+2 .
1 22k+1( 1)k+g+d 4]{3—1—2 ]T 7
_ _ _ ]{7 4k



This concludes the proof of Theorem [L.1] and this paper.
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